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1 Introduction

This extended abstract further develops the algorithms in [8] and [9] for

rewriting expressions involving differential operators. The differential oper-

ators that we have in mind arise in the local analysis of nonlinear dynamical

systems. In this work, we extend these algorithms in two different directions:

1. We generalize tile algorithms so that they apply to differential opera-

tors on groups. This generalization is important for applications. For

example, the nonlinear system describing a robotic joint or a satellite

evolves on the group G = SO(3) of spatial rotations. The local study

of such systems requires the computation of expressions consistinK of

,tifferentta[ operators on G.

'2. We do.velop the data structures and algorithms to compute symboli-

cally the action of differential operators on functions. Again, this is

crucial for applications. We illustrate this by deriving conditions for a

numerical algorithm to remain constrained to a group. In other words,

if x,_+l = T(x,_) is the update rule for a numerical algorithm evolv-

ing on a group G, we would like to choose T so that xn E G implies

z,_+ l E G.

For a further discussion of applications of these algorithms, see {5] and [6]

and the references given there.

Ilere is the

Set Up.

1. Let k denote either the real or complex numbers.

2. Let G denote a finite dimensional Lie group over k, g denote its Lie

algebra, and _, ..., YN a basis for g of left-invariant vector fields.

3. Let R = C'_(G) denote the algebra of smooth functions on G taking

values in k.

. Fix M derivations of R of the form
I

N

Fj Z " u= aj Y,, aj E R,
p.=l

j=l .... ,M, 1)

and let A denote the free associative algebra k<F1, ..., FM> of dif-

ferential operators generated by F1, ..., FM, with coefficients from
k.



We are concerned with the following

Problem. Given a differential operator p E A and a function f E R,

substitute the Equations (1) and compute p. f using as few operations as

possible. This problem is interesting since in many cases cancellations take

place.

Example 1. Let G = I'U v denote the abelian group,

0
}_=--, j= 1 .... ,N,

Oxj

the (left invariant) coordinate vector fields, and Fl, /:'2, 173 three fixed vec-

tor fields defined in terms of the _], via Equations (1). Then the naive

substitution of {1) and simplification of p - f, where

t' = F_F2 F_ - F3 F_ F2 - /:2 F_/73 + Fa/72/'3 E A, f E R

yields 2,1N 3 terms, while more specialized algorithms need only compute the

6N 3 terms which don't cancel. These types of examples are considered in

[81 and [9].

Example 2. Consider the local analysis of a nonlinear system of the form

x(t) = r(x(t)), _(0) = _0 _ G, ('2)

where
M

F= Z ,,jFj.
3=1

In practice, the u i are constants, functions of time, or perturbation parame-

ters. The study of this system typically involves the computations of various

series in the algebra A of differential operators. For example, the local flow

of the system is determined bv the Taylor series

h 2 h 3

exphF = 1 + hF +_ -_-.F _ + -_(F 3 +... E A[[h]].

An alternative to computing higher derivatives F k is to choose constants

ci, cO, i = 1, ..., k, j < i, so that the expression

exp hcA:['k ...exp he1 if'l,



where

N

r' : ,

N

N

/_3 = Z aU(exp(hc37/7_)' exp(hc:u l)t). z°)Y_, e g,

is equal toexphF to order k. Notice that the left invariant vector fields t;)

arise by "freezing the coefficients" of F at various points along its tlow.

Expanding these expressions around the common base point z ° (E (-;

yields many terms, which must cancel in the end if the algorithm is going

to approximate the flow of the underlying nonlinear system. The action

of the differential operators /_j on the coefficient functions a_. must also be

computed. Notice, that unlike Example 1, the _u here do not commute.

This example will be considered in more detail in Section ,I.

The computations in both examples are easily kept track of by using

finite rooted trees, labeled with tile symbols F1, ..., FM. It turns out tile

the vector space, with basis the set of such trees, has an algebraic structure

B which is crucial to efficiently organizing the computation. The advantage

of working with the trees B is that many terms which cancel in the end need

not be computed. See [6] for an expository treatment of this idea. 'rile key

observation required for this work is that it is possible to define an action of

the algebra B of finite rooted trees, labeled with Fi, ..., FM, on the ring of

functions R which enjoys essentially all the properties of the familiar action

of the algebra A of differential operators generated by Fl, ..., F_ on R. It

turns out that B is a Hopf algebra, just as A is, and that both actions give

R the structure of what is called an H-module algebra.

In Section 2, we review the re}evant material from algebra. This material

may be skimmed on a first reading. In Section 3, we define the Hopf algebra

of Cayley trees and its action on the ring of functions R. In Section 4, we

continue the discussion of Example 2.



2 //-module algebras

In this section we review the basic facts about bialgebras and //-module

algebras which will be used in the remainder of this paper.

[n this section, k can be any field of characteristic 0. By an alqebra we

mean a vector space A over the field k with an associative multiplication and

unit. The multiplication can be represented by a linear map p : ,.l®kA _ A;

the unit can be represented by a linear map k _ A (the map sending l E k
to l E A). The facts that the multiplication is associative, and that l C A

is a unit. can be expressed by tile commutativity of certain diagrams. For
example, the commutativity of the diagram

AOOkA_kA _ A®kA

t t

where the upper horizontal arrow is the map p ® I, tile left vertical arrow is

the map I O p, and the remaining two arrows are the map p, expresses the
_sociativity of multiplication.

Tile dual notion to an algebra is a coalgebra: a vector space C over the

field k together with a coassociative coproduct A : C ---. C®kC and a counit

: C _ k. Tile fact that A is coassociative and that e is a counit is expressed

by diagrams which are dual to the diagrams which express the facts that tile

multiplication of an algebra is associative, and that 1 E A is a unit: they are

the same diagrams, with tile direction of all arrows reversed. For example,

coassociativity is expressed by tile commutativity of the diagram

C Ok C Qk C _ C ®k C

l r
COkC _ C

where the upper horizontal arrow is the map A ® I, the left vertical arrow

is the map I O A and the remaining two arrows are the map A. Often the

element A(c) E C ®k C is written _] c(1 ) ® c(2 ).
M

A bialgebra is a vector spad H over k which has both an algebra and

a coalgebra structure, such that the coalgebra structure maps are algebra

homomorphisms, or equivalently, the algebra structure maps are coalgebra

homomorphisms. (This equivalence can be seen by expressing the assertion

that the coalgebra structure maps are algebra homomorphisms as a set of

commutative diagrams: this set of diagrams is self-dual.)

Some examples of bialgebras are the following:



I. Let G be a group, and let kG be the group algebra of G: the vector

space kG has the elements of G as a basis, with multiplication defined

by extending the multiplication on G linearly. The coproduct and

counit of kG are defined by

,%

A(g) = j®g (
((g) = I J gEG.

2. Let G be an atfine algebraic group, and let k[G] be the algebra of

representative functions on G. The algebra structure of k[G] is the

usual algebra structure of functions with point-wise multiplications.

The coproduct arises from the group multiplication G x G -- G, which

induces tile map k[G] -- k[G x U] _ k[G] @k k[G]. Tile counit arises

From the map {e} -- (.;, where {e} is tile single-element group.

3. Let L be a Lie algebra over k, and let U(L) be the universal enveloping

algebra of L. The coproduct and counit of U(L) are defined by

A(x) = l@x+x@l

c(z) = 0 /
zEL,

and extended to all of U(L) using tile fact that A and e are algebra

homomorphisms.

Usually, in studying bialgebras, an additional condition is imposed which

is analogous to the assertion that a semigroup is a group. Such bialgebras are

called tfopf algebras. Tile bialgebras which we consider in this paper (such

as the universal enveloping algebra of a Lie algebra) satisfy this condition

automatically.

A coalgebra is said to be cocommutative if it satisfies A = To A, where

T is the map T : C ®k C -- C®k C defined by T(x ® y) = y® x. Note that

the bialgebras in Examples 1 and 3 are cocommutative.

A vector space V over k is said to be graded if there is a sequence of

subspaces Vo, Vt, ... such that !

oo

v_-(_v,_.
_mO

A graded vector space V is said to be connected if Vo _ k.



Let H be a bialgebra. A H-module alqebra is an algebra t2 which is an

H-module such that the action satisfies

h. (fg) = I • ) • ,it,
(hi

for allhE 1[, f,g E R.

Remark 2.1 Ifg E H satisfies A(g) = g®g and R is an H-module algebra,

then g acts as an endomorphism of/-/; if z E tf satisfies A(x) -- 1 _ z + x 5) l

and R is an H-module algebra, then x acts as a derivation of R.

3 //-module algebras and Cayley trees

[n this section we describe a bialgebra structure on the vector space with

basis all equivalence classes of rooted trees. The relation between trees

and differential operators goes back at least ,as far as Cayley [3] and [,1]

Important use of this relation has been made by Butcher m his work on

higher order Runge-Kutta algorithms [1] and [2]. In this section and the

next, we follow the treatment in [8] and [9]. By a tree we mean a nonempty

finite rooted tree, and by a forest we mean a finite family of finite rooted

trees, possibly empty.

Suppose {Fl, ..., FM} is a set of formal symbols (which later will be the

names of differential operators). By a labeled tree we mean a tree for which

we have assigned an element of {FI, ..., FM} to each node, other than

the root, of the tree. We say that a tree is ordered in case there is a partial

ordering on the nodes such that the children of each node are non-decreasing

with respect to the ordering.

We now describe the bialgebra structure on spaces of trees. Let

k{7(&, ..., FM)}

denote the vector space which has as basis all equivalence classes of labeled,

ordered trees. The vector space k{T(F1 .... , FM)} is graded, with the grad-

ing given as follows: if the tree t has n + 1 nodes, then

t E k{¢(&, ..., F,f)L.

We now define the multiplication on k{T(F_,..., FM)}. Since the set of

labeled, ordered trees form a basis for k{T(F_, ..., FM)}, it is sufficient to

describe the product of two such trees. Suppose that tl and t2 are labeled,

ordered trees. Let sl, ..., s, be the children of the root oft1. If t2 has n+ 1

nodes (counting the root), there are (n + 1) _ ways to attach the r subtrees



of tt which have sl .... , s_ ,as roots to the labeled tree t2 by making each

si the child of some node of t2, keeping all tile original labels. Order the

nodes in the product so that the nodes which originally belonged to each tree

retain the same relative order to each other, but all the nodes that orginally

belonged to tt are greater in the ordering than the nodes that originally

belonged to t2. The product tlt2 is defined to be the sum of these (n + l) _

labeled trees. It can be shown that this product is associative, and that the

trivial labeled tree consisting only of the (unlabeled) root is a right and left

unit for this product. [or details, see [7].

We now define the comultiplication on k{T(F1,..., FM)}. lf t is a tree

whose root has children sl ..... s_, the coproduct A(t) is the sum of the 2 r

terms tt 63t2, where the children of the root of tl and the children of tile root

of t2 range over all 2_ possible partitions of tile children of the root of t into

two subsets. The labels remain the same, and the ordering is handled in the

same way as in the product. The map e which sends the trivial labeled tree

to 1 and every other tree to 0 is a counit for this coproduct. In [7], it is

shown that these algebra and coalgebra structures are compatible, proving

the

Theorem 3.1 The space k{7"(Ft, ..., FM)} is a 9faded connected cocom-

mutative bialgebra.

We call this algebra the algebra of Cayley trees.

We now define an action of the algebra of Cayley trees

B= k{T(F1,..., FM)}

on the ring R. making R a B-module algebra, which captures the action of

txees as higher derivations. The action is defined using the map

_, : k{T(F,, ..., FM)} --_ Endk R,

as follows:

1. Given a labeled, ordered tree t with m + 1 nodes, assign the root

the number 0 and assign the remaining nodes the numbers 1, ..., m.

We identify the node with_the number assigned to it. To the node k

associate the summation index pj,. Denote (pl, ..., p,n) by p.

2. For the labeled tree t, let k be a node of t, labeled with F.** if k > 0,

and let l ..... It be the children of k. Define

• ..Yul, a_,, if k> 0isnot the root;

= Ym"'Y_,l,, if k--0 is the root.



Note that if k > L), then /{{k;p) E R.

3. Define
N

$(t) = Z /_(m;p)... R(1;p)c(0;p).
ill 0...,_rn= 1

4. Extend tP to all of k{T(FI, ..., FM)} by linearity.

[t is straightforward to check that this action of B on R makes R into a

B-module algebra.

We summarize with the following theorem.

Theorem 3.2 Let G ,lenote a finite dimensmnal Lie group and R the alge-

bra of smooth functzons on G. as detailed in the Set Up. Let B denote the

algebra of Cayley trees k{T(Fl, ..., FM)}. Then R is a B-module algebra

with respect to the act:on defined by _p.

_emark 3.1 The standard action of the algebra A of differential operators

generated by Ft, ..., FM on the algebra of smooth functions R gives 12 the

structure of a A-module algebra. It is easy to relate these two H-module

algebra structures on R and this observation is the basis for our algorithms.
Let

¢:A_B

denote the map sending the generator F; of the algebra A to the tree con-

sisting of two nodes: the root and a single child labeled Fj. Extend ¢ to be

an algebra homomorphism. Let \, denote the map

A _ Endk R

defined by using the substitution (1) and simplifying to obtain an endomor-

phim of R.

Theorem 3.3 (t) The maps _, ¢ and ¢ are related by X = tp o o. {ii) Fix

a function f G 12 and a differential operator p E A. Then
?

p. / = e;(p). /.

Here the action on the left views 12 as an A-module algebra, while the action

on the right views R as B-module algebra.



The tirst assertion is proved in [9] and the second assertion follows from the
tirst assertion and the definitions.

Using this theorem, it is easy to give an algorithm to solve the Problem

posed in Section 1. We defer to later paper a complete analysis of the

complexity of the algorithm and simply remark here that in many examples

the algorithm results in a savings which is exponential in the degree of the

differential operator.

Algorithm. Given a smooth function f E /2 and a differential operator

p E A, compute the function p. f via ¢(p). f.

4 Applications

We use the uotation of the Set Up from Section 1. Letexp(htV)x denote the

resulting of flowing for time h along the trajectory of the nonlinear system

(2) through the initial point z ° E G. We require a theorem concerned with

the explicit computation of terms in the Taylor series expansion of a solution

of (2). This is one of the main applications of the symbolic calculus described
in the sections above.

This theorem is most easily stated if we introduce two additional oper-

ations on the algebra of Cayley trees B. Given a,/3 E B, define the meld

product Cl Q (_ to be the labeled, ordered tree obtained by identifying the

roots of the two trees. The meld product is then extended to all of B by

linearity. Given a derivation F E Der(R), let /3 be the tree o(F) and let

_ E /3. Recall 3 is a tree consisting of a root and a node labeled F. We

define the composztion product 13o cr to be the tree formed by attaching the
subtrees whose roots are the children of the root of _ to the node labeled F

of the tree d. If c_ E /3 is a tree, define the ezponentialand Meld-ezponentml

of a tree by the formal power series

h2 2 ha
exp(h_) = 1 +h_+_-.l_ +_.1_ 3+...

h 2 ha

Mexp(hc_) = 1 + hr_ + -_-t_r Qor + _-.I c_G c_ ® c_+ ....

Theorem 4.1 (i) Assume f E R and F E Der(R). If f is analytic near z,

then for sufficiently small h,

f(exp(hF)z) = exp(h¢(F)), fJ_.

I0



(ti) Let F = }-_=, a"(exp(hG)zO)Y_, where G E Der(R), and x ° E (-;.
Then

F. f = (¢(F) o Mexp(hG)). f.

Using this theorem, it is easy to analyze the numerical algorithm de-

scribed in Example 2 of Section 1. For typographical reasons, we use the

following one dimensional notation for trees1: the tree consisting of a root

and a single child labeled Fi is denoted l[Ft]; the tree consisting of a root

and two children labeled Fi and F_ is denoted I[Ft, F2]; the tree consisting

of a root, with a single child labeled F1, which itself has two children labeled

F2 and F3 is denoted I[FI[F2, F_]], etc. Note that the labels need not be

distinct, but their order is important.

Consider tile expression

exp heal"3 exp hc2t72 exp hcl f;l

computed to order h 3. Let p E A denote the resulting expression.

image ¢(p) C I3 contains the following terms:

3 2 3 o
h C3C._i h3cac22

h c2%, I[Z[Z, Z]] + • " l[r[r, r]] + ------:I[F[F, F]]
2! 2[ 2[

q-h 3 c,3c31 c32 I[ F[ F, F]].

Our goal is to ctmose the constants ci and Cij SO that that

'Fhe

exp hF = p + O(h4).

h 3
One of the third order term arising from O(exphF) is --STI[F, [F, F]]. Setting

the coetficients of these trees equal to each other yields the constraint:

2--i-.+ T + + c3 z,c3== 3-.'

Other constraints arise from the other trees. We have coded this algorithm

in Maple, Mathematica, and Snobol and are currently experimenting with
it.

1The notation is due to Peter Olver, as is some of the Mathematica code used to

generate these examples.

11
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